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Article Summary 

Measurement-based quantum computation is a framework of quantum computation, where 
entanglement is used as a resource and local measurements on qubits are used to drive the computation. 
It originates from the one-way quantum computer of Raussendorf and Briegel, who introduced the so-
called cluster state as the underlying entangled resource state and showed that any quantum circuit could 
be executed by performing only local measurement on individual qubits. The randomness in the 
measurement outcomes can be dealt with by adapting future measurement axes so that computation is 
deterministic. Subsequent works have expanded the discussions of the measurement-based quantum 
computation to various subjects, including the quantification of entanglement for such a measurement-
based scheme, the search for other resource states beyond cluster states and computational phases of 
matter. In addition, the measurement-based framework also provides useful connections to the 
emergence of time ordering, computational complexity and classical spin models, blind quantum 
computation, etc. and has given an alternative, resource-efficient approach to implement the original 
linear-optic quantum computation of Knill, Laflamme and Milburn. Cluster states and a few other resource 
states have been created experimentally in various physical systems and the measurement-based 
approach offers a potential alternative to the standard circuit approach to realize a practical quantum 
computer. 
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Introduction 

Quantum computation has the potential to perform specific computational tasks more efficiently and 
hence faster than current classical computers (Nielsen & Chuang, 2002). Over the past decade, a few 
small-scale quantum computers, whose size ranges from a few to about seventy quantum bits (qubits), 
have been built and put into action. The technology has become increasingly mature and it is likely that 
quantum computers will soon perform computational tasks beyond what current classical computers can 
efficiently simulate (Arute et al., 2019).   

A natural framework for quantum computation is the standard circuit model, where an array of qubits are 
appropriately initialized, such as in the logical 0 state, and depending on the algorithmic task, a sequence 
of quantum gates (typically one-qubit and two-qubit) are applied to the array of qubits; finally, readout is 
done by measuring individual qubits in the logical 0/1 basis, the so-called computational basis. In addition 
to the circuit model, the adiabatic quantum computational model does not use gates but rather time-
dependent, smoothly or adiabatically varied Hamiltonians (Averin, 1998; Farhi et al., 2000; Kadowaki & 
Nishimori, 1998). Both rely on the unitary property of either quantum gates or Hamiltonian evolution.  

In contrast, measurement-based quantum computation, which originated from the work of Raussendorf 
and Briegel on the one-way quantum computer (Raussendorf & Briegel, 2001) utilizes local measurement 
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to drive computation. Measurement is often regarded as a mechanism that destroys coherence in 
quantum states. The key feature to understand how measurement can achieve unitary operation is 
entanglement. The broader measurement-based framework is currently being explored as an alternative 
approach to realize a quantum computer.  

 

Part one: Quantum computation and measurement-based approaches 

Early development in quantum computation 

The earliest notion of quantum computation goes back to the early 1980s. Paul Benioff published a paper 
that described a microscopic model of the classical Turing machine using quantum mechanics (Benioff, 
1980). Yuri Manin also suggested the idea of quantum computation in his book “Computable and 
Noncomputable” (Manin, 1980). In a conference in 1981, Feynman discussed “Simulating Physics with 
Computers” and pointed out that it was not possible to simulate a quantum system efficiently with 
classical computers (Feynman, 1982). Therefore it was natural to consider simulating a quantum system 
with another quantum system that is well-controlled or, in other words, with a quantum-mechanical 
computer (Feynman, 1985). The most prominent work that suggests the potential quantum advantage is 
described in a paper by Shor that showed a quantum computer could, in principle, factorize a large integer 
number almost exponentially faster than any currently existing classical methods (Shor, 1994). To get a 
sense of the time complexity, if it takes 1 second to factor a 30-digit number for both classical and 
quantum computers, then it takes about 3 years for the classical computer to factorize a 100-digit number, 
but about 40 seconds for a quantum computer. To factorize a 300-digit number will take about a third of 
the age of the universe for a classical computer but only about 10 minutes for a quantum computer. At 
present such a powerful quantum computer does not exist. However, the potential capability prompted 
a great interest in both theoretical and experimental quantum computation and information science. The 
progress of quantum technology in the past few decades shows promising advances towards these goals.  

Rules of quantum mechanics and the circuit model of quantum computation 

To understand how quantum computation works, it is essential to understand the governing rules 
stemming from quantum mechanics. Three of them are particularly important: (1) Superposition, (2) 
Evolution, and (3) Measurement. For an explanation of these rules, see e.g., (Susskind & Friedman, 2014). 
Superposition appears in classical waves, and in quantum mechanics, it allows quantum states, like vectors, 
to add or interfere. In fact, by representing quantum states as vectors (such as single-qubit states 
indicated by arrows in the `Bloch’ sphere; see Figure 1(a)), how they evolve in time is governed by 
Schroedinger’s equation, whose effect is to apply a suitable unitary matrix to the vector representing the 
quantum state. A quantum gate is built from the action of evolution. For example, the goal of the so-called 
NOT gate is to flip the arrow pointing to the north pole to the south pole in the Bloch sphere and vice 
versa; see Fig. 1(b). To so do, the evolution may begin with the north pole and follow the path of a meridian 
to the south pole. Another example is the so-called Hadamard gate, which consists of two steps (see Figure 
1(b)): (1) rotation around the y-axis by -90○ and followed by (2) rotation around the z-axis by 180○. The 

effect is to rotate |0⟩ to (|0⟩ + |1⟩)/√2 , and |1⟩ to (|0⟩ − |1⟩)/√2. By using a sequence of three Euler 
rotations, an arbitrary one-qubit state 𝛼|0⟩ + 𝛽|1⟩ can be arrived at from |0⟩, where α and β are two 
complex numbers that satisfy |𝛼|2 + |𝛽|2 = 1. 
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Figure 1. Bloch sphere. (a) A vector represents the state of one qubit. (b) Illustration of the Hadamard gate acting on a vector 
pointing to the north pole. It first rotates it -90 degrees around the y-axis and then 180 degrees around the z-axis. 

The evolution under Schroedinger’s equation is deterministic; in contrast, measurement of a quantum 
state generally yields random outcomes, and the distribution of outcomes also depends on the basis or 
the axis of the measurement. The rule of measurement in quantum mechanics states that the act of 
measuring an observable 𝑂 projects the system to an eigenstate of 𝑂, and the observed value is the 
associated eigenvalue. In the case of one qubit, the observable 𝑂 defines an axis cutting through the 
center of the Bloch sphere, and the two intersecting poles are the two possible outcomes. Unless the 
arrow representing the quantum state aligns exactly with one of the poles, the measurement outcome 
appears randomly and the outcome corresponding to either pole can appear. The probability distribution 
governing the random outcomes obeys the so-called Born rule, given by the modulus square of the 
coefficient of that eigenstate in the quantum state to be measured, and depends on the relative 
orientation of the state vector with the measurement axis.  

The usual measurement result of 0 and 1 is represented as the axis connecting the north and south poles 
on the Bloch sphere. But measurement along the x axis that intersects the equator gives rise to two 

possible outcomes corresponding to |+⟩ = (|0⟩ + |1⟩)/√2 and |−⟩ = (|0⟩ − |1⟩)/√2. Practically, such a 
measurement can be achieved by carrying out the typical energy eigenbasis (Z) measurement in the 0 and 
1 basis after the Hadamard rotation to induce the basis change (from X to Z or vice versa). 

A quantum computer has many qubits, and there are an exponential number, 2𝑁, of basis states for 𝑁  
qubits, ranging from |0 … 0⟩  to  |1 … 1⟩. Description of such a vector and its change in time requires an 
exponential number of complex numbers which is intuitively why quantum computers are difficult to 
simulate by classical computers.  

Even with just two qubits, a natural consequence of quantum mechanics yields an exotic feature called 

entanglement, that appears in a quantum state of (|00⟩ + |11⟩)/√2 , which can be achieved by preparing 
the two qubits in |00⟩ initially, applying the Hadamard gate to the first qubit (which rotates it from the 

north pole to a point on the equator: |+⟩ = (|0⟩ + |1⟩)/√2 ), and then acting on them by a two-qubit 
CNOT gate (which flips the second bit only if the first is 1), just like the first two gates shown in Figure 2. 

The sequence takes |00⟩ to (|0⟩ + |1⟩)|0⟩/√2  and then to (|00⟩ + |11⟩)/√2. 

A quantum computer, in a nutshell, implements a large unitary matrix 𝑈 on a vector of 2𝑁 components 
representing 𝑁  quantum bits. A mathematical result (DiVincenzo, 1995) shows that any such unitary 
matrix 𝑈 can be decomposed into a sequence of one- and two-qubit gates, where one-qubit gates are 
simply performing local rotations and two-qubit gates are generating entanglement. The CNOT gate is the 
only two-qubit gate that is needed (Barenco et al., 1995); other entangling gates, such as a Controlled-Z 
gate may also be used instead.  Such one- and two-qubit gates form the universal set of gates (DiVincenzo, 
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1995); such a notion of universality already exists in classical computation, with the set of AND, OR, and 
NOT gates being universal. From this picture of quantum computation, entanglement is created by 
quantum gates and subsequently reduced or destroyed by measurement. In measurement-based 
quantum computation, the universal set of gates needs to be implemented by measurement. 

 

Figure 2. Quantum circuits. (a) It is a quantum circuit of three qubits: first, a Hadamard gate is applied to the first qubit, 

transforming |0⟩ to |+⟩, then the CNOT gate is applied to the first and second qubits, followed by another CNOT gate acting on 

qubits 2 and 3. Each qubit is read out in the 0/1 basis. (b) A circuit to generate a one-dimensional three-qubit cluster state. After 
the three Hadamard gates, the three qubits become |+⟩, and the pairwise CZ gates transform them into a chain in the cluster 
state. (c) A illustration of a two-dimensional cluster state in a 3-by-3 array of spins. This also serves as the definition of the 2d 
cluster state. (d) The cluster state can be generalized to any graph state, where pairwise CZ gates apply to a pair of qubits (initially 
in |+⟩) according to the edges in the graph. 

Table 1 Definitions of some terminology 

Graph states: Qubits reside on the vertices of a graph. The graph state can be defined by a procedure--
-all qubits are initialized in the |+⟩ states and Controlled-Z gates are applied pairwise to a 
pair of qubits that share an edge. The resultant state is a graph state. See Fig. 2. 

Cluster states: A cluster state is a graph state when the underlying graph is a regular graph, such as a 
one-dimensional lattice or a two-dimensional square lattice. See Fig. 2. 

Matrix product 
states: 

A matrix product state is a quantum state whose coefficients in some expansion of basis 
states can be given via a product of matrices. This is usually used to describe one-
dimensional quantum states. 

Projected-
entangled-pair 
states: 

A projected-entangled-pair state is a quantum state that can be described by a 
projection of local virtual qubits or qudits to local physical degrees of freedom, and the 
virtual qubits are initially entangled pairwise with a neighboring virtual qubit. Matrix 
product states are special cases. See Fig. 7. 

Tensor-network 
states: 

A tensor-network state is a quantum state whose coefficients in some expansion of basis 
states can be given via a contraction of a tensor network. A tensor network is a collection 
of tensors located, e.g., at vertices of a graph. Edges connecting two vertices correspond 
to contraction, i.e., summing over identical indices. The local tensors are related to 
projections in the projected-entangled-pair states. They are in fact equivalent 
descriptions. Matrix product states are special cases. See Fig. 7. 

Bell-state 
measurement: 

This is also called Bell-basis measurement. It corresponds to a measurement on two 
qubits and the effect of the measurement is to project the two qubits to any of the four 
Bell states. See Fig. 4. 

 

Measurement-Based Quantum Computation 

Besides the circuit model, there are other frameworks of quantum computation, such as adiabatic 
quantum computation, which are still based on the unitary evolution of a quantum system. Topological 
quantum computation utilizes the properties of the so-called anyons, which under exchange of pairs of 
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anyons, i.e. braiding, can induce unitary transformation that can be used for quantum gates. The subject 
of interest here is measurement-based quantum computation (MBQC), which uses measurement to 
achieve emulation of unitary circuits. It originated from the pioneering work of Raussendorf and Briegel 
on the one-way quantum computer (Raussendorf & Briegel, 2001). Subsequent works resulted in some 
variants. The variants that will be discussed include the teleportation-based, state-transfer-based, and 
correlation-space approaches, which provide useful perspectives to appreciate the original one-way 
model and further development of the measurement-based quantum computation. 

One-way quantum computer and cluster states 

In around 2000, Raussendorf and Briegel showed that quantum computation was possible by merely 
performing individual single-qubit measurements, which they called the one-way quantum computer  
(Raussendorf & Briegel, 2001). The key necessary ingredient is the high persistent entanglement residing 
in the cluster state that Raussendorf and Briegel exploited (Briegel & Raussendorf, 2001). A cluster state 
can be described as follows. Qubits are sitting on the vertices of a graph, and the edges describe an Ising-
like interaction (Ising, 1925) between two adjacent spins. The only nontrivial effect is to induce a sign 
change in the state |11⟩, so that |11⟩ becomes −|11⟩ after the interaction. This is also called a Controlled-
Phase or Controlled-Z (CZ) gate. If initially all the qubits are in  |+⟩ state, and the system after pairwise 
action of Controlled-Z gates will end up in a graph state. The cluster state is a special graph state on a 
regular lattice, such as the square lattice; see Fig.2 (c)&(d).  

Single-qubit measurement can only decrease the amount of entanglement, and hence the computation 
via measuring qubit by qubit in the cluster is “one-way”. Any quantum circuit in the standard circuit model 
can be translated to a measurement pattern on all the qubits of the cluster state. Execution of the 
measurement pattern with possible adaptation then drives computation and at the same time, the 
entanglement as a resource (for computation) is being `consumed’. 

In more detail, in a two-dimensional square array of qubits initially in the cluster state, structures can be 
‘carved out’ to form a backbone of computation by measuring unwanted qubits in the z-axis. Such a 
backbone mimics the structure of a quantum circuit. For a segment of five linear sites, any rotation in the 
Bloch sphere can be achieved by using a combination of three Euler angles (α,β,γ) shown in Figure 3(a). 
The symbols in the circles represent the angles of the measurement axes as measured from the positive 
x-axis on the x-y plane. Given that measurement gives random outcomes, to make the computation stay 
on track, subsequent measurement axes may need to be adapted, e.g., by flipping the angle with a minus 
sign. This adaptation is the feedforward that is needed to make the desired unitary gates deterministic 
(Raussendorf et al., 2003). To complete the universal gate set, a two-qubit entangling gate such as the 
Controlled-NOT gate is needed. One example to realize this is illustrated in a structure of ‘I’ shape 
junctions; see Figure 3(b). It is interesting to note that the adaptation of measurement axes is not 
necessary to implement the CNOT gate, in contrast to arbitrary one-qubit gates. There are other variants 
of these ‘LEGO’ pieces for quantum gates (Raussendorf et al., 2003; Raussendorf & Briegel, 2001). By 
placing these pieces on a 2D grid, any quantum circuits can be realized by local measurement. Hence, the 
2D cluster state can be regarded as a universal resource for quantum computation.  

The above explanation of the one-way quantum computer relies on the mapping of a quantum circuit to 
a measurement pattern in the cluster state. In fact, it is not necessary to use the circuit-simulation picture; 
instead an “intrinsic” one-way computer based on the consideration of measurement, time ordering, and 
deterministic computation can be used (Raussendorf et al., 2016; Raussendorf & Briegel, 2002).   
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Figure 3. Realizing universal gates. (a) Basic block of an input-output structure on two qubits which have entanglement formed by 

a CZ gate. The symbol ξ represents the basis of measurement, which is the observable 𝑂̂(𝜉) ≡ 𝑐𝑜𝑠 𝜉 𝜎𝑥 + 𝑠𝑖𝑛 𝜉 𝜎𝑦 . Denote the 

random measurement outcome by s=0 or 1, the input state |𝜓𝑖𝑛⟩ will be transformed to |𝜓𝑜𝑢𝑡⟩ = 𝐻𝑒𝑖𝜉𝜎𝑧/2(𝜎𝑧)𝑠|𝜓𝑖𝑛⟩, where tht 
output resides on the second qubit. (b) Entanglement structure for an arbitrary one-qubit gate. Specific gates may need fewer 
sites. The + or – sign inside the circles represent adaptation of measurement axis. Labeling the measurement outcomes by 𝑠𝑖, the 
signs of the measurement axis on qubits 2,3, and 4, are determined by (−1)𝑠1, (−1)𝑠2, and  (−1)𝑠1+𝑠3 , respectively. This is the 
adaptation of later measurement axes, dependent on previous measurement outcomes, which requires feedforwarding the 
information. This also imposes a time ordering 1→2→3→4→5. The three angles α, β, and γ are related to the Euler angles that 
define a general rotation. (c) Structure for realizing the two-qubit CNOT gates. Interestingly, these measurements are all fixed at 

𝑂̂(𝜉 = 0), can all be performed at the same time step, and no feedforwarding is needed if the CNOT gate is the last operation. 
However, the measurement outcomes are needed to adapt the measurement axes for later gates. (d) Example of a 3-qubit circuit 
in the one-way quantum computer picture, realized in a grid of 14 x 7 qubits, initialized in the cluster state and consumed by 
measurement from left to right. Dark circles represent the measurement in the z-axis. Double-headed arrows in the circles 
illustrate the axes of measurement, i.e., the angles 𝜉. Note that the three Pauli matrices 𝜎𝑥 , 𝜎𝑦, and 𝜎𝑧 are also conveniently 

represented by X, Y, and Z, respectively. See also Ref. (Raussendorf & Briegel, 2001). 

 

Other approaches of measurement-based quantum computation 

Since the invention of the one-way quantum computer by Raussendorf and Briegel, there have been 
attempts to understand this novel approach of quantum computation by using different perspectives, 
including teleportation, state transfer and tensor network. 

Teleportation-based measurement scheme for quantum computation. The teleportation-based 
construction of quantum gates was earlier proposed by Nielsen and Chuang (Nielsen & Chuang, 1997) and 
by Gottesman and Chuang (Gottesman & Chuang, 1999). The basic setup of teleportation is illustrated in 
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Figure 4(a), where an unknown qubit state |𝜓⟩ can be transferred to a third qubit by using an entangled 

pair (|00⟩ + |11⟩)/√2, one of the four Bell states, shared between a second and a third qubits and then 
joint measurement on the first two qubits. A correcting operation that depends on the measurement 
outcomes completes the teleportation and recovers the unknown state. By using such a teleportation-
based approach (Bennett et al., 1993; Gottesman & Chuang, 1999; Nielsen & Chuang, 1997), Nielsen 
showed that it is possible to perform universal quantum computation using only measurements (needed 
to create entanglement that will be used to mediate gate operations) and quantum memory (needed to 
store quantum information and entanglement) (Nielsen, 2003), without the need of a prior entangled 
resource state. The key intuition is that by allowing measurement on two or more qubits, entanglement 
can be created. Nielsen generalized the quantum teleportation protocol by using a locally rotated Bell 
state (by 𝑈), and showed that a quantum state could be teleported so that the output state is acted by a 
random Pauli operator σ (associated with the usual teleportation) and additionally the desired gate 𝑈; see 
Figure 4(b). The random Pauli operator arises due to unpredictable measurement outcomes and can be 
probabilistically canceled by repeatedly performing the above “teleportation” procedure as in Figure 4(b) 
until the product of these Pauli operators cancels one another and becomes identity. By using a four-qubit 
state that was defined by rotating two pairs of Bell states by a two-qubit gate 𝑈, two-qubit gates can be 
achieved; see Figure 4(c). Such a four-qubit state can be created by a four-qubit measurement and it can 
be used to induce a two-qubit gate such as the CNOT gate in Nielsen’s scheme. The upshot is that universal 
quantum computation can be done by a combination of two- and four-qubit measurement.  

 

Figure 4. Measurement-based quantum computation via teleportation. (a) The standard teleportation. It consumes a Bell state 

(|00⟩ + |11⟩)/√2 and performs a Bell-basis measurement together on the known state ψ and one qubit of the Bell state, which 
results in transferring the quantum state |𝜓⟩ to the other unmeasured qubit of the Bell state, up to a random Pauli operator. The 

Bell-basis measurement projects a two-qubit quantum state to any of the four basis states:  |𝛷±⟩ = (|00⟩ ± |11⟩)/√2 and  

|𝛹±⟩ = (|01⟩ ± |10⟩)/√2 . The random Pauli operator arises because that the measurement is intrinsically random and the 
randomness cannot be removed. (b) Teleportation-based one-qubit gates. Different from (a), a gate 𝑈𝜎𝑗  is applied to the third 

qubit to rotate the Bell state and there is no correction operation on the third qubit. This circuit can be interpreted as using a 
rotated Bell state as a resource for teleportation. Such a rotated Bell state can be created probabilistically by performing an 
appropriate two-qubit measurement. (c) Teleportation-based two-qubit gates. Generalizing the consideration in (b) to two pairs 
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of Bell states rotated by a two-qubit gate gives an equivalent circuit that starts with a four-qubit entangled state and implements 
a two-qubit gate on a input two-qubit state ψ by a pair of Bell measurements. See also Ref. (Nielsen, 2003). 

Nielsen’s teleportation-based measurement scheme for quantum computation does not rely on an initial 
entangled state such as a cluster state. All the qubits can be set to a fixed |0⟩ state in the beginning. The 
Bell states that are needed for teleportation are created by measurement. The measurement needs to 
involve two qubits simultaneously, unlike the measurements in the one-way quantum computer that only 
involve individual qubits. In such a teleportation-based scheme, implementation of a one-qubit gate 
requires two-qubit measurement and that of a two-qubit gate seemingly requires four-qubit 
measurement. From a different viewpoint, the multi-qubit measurement allows the creation of the 
needed entanglement. Conceptually, Nielsen’s result may be regarded as a simple corollary from the one-
way model of Raussendorf and Briegel (Raussendorf & Briegel, 2001). The ability to perform arbitrary 4-
qubit measurements means that a cluster state on the honeycomb lattice can be created by measuring 
its so-called stabilizer operators, which define the cluster state model. The execution of subsequent 
computation can then be done by one-qubit measurements as in the one-way model. 

The requirement of a four-qubit measurement in Nielsen’s scheme for the CNOT gate may not be feasible. 
Fenner and Zhang later reduced the required measurement to three qubits (Fenner & Zhang, 2001), and 
subsequently, Leung reduced it further to two qubits (Leung, 2001, 2004). Using only two-qubit 
measurements for universal quantum computation is already optimal in terms of the number of qubits 
that need to be measured simultaneously.  

Later, Aliferis and Leung (Aliferis & Leung, 2004) showed that the teleportation-based approach is 
equivalent to the one-way approach by demonstrating local mapping between them in the set of universal 
gates. Subsequently, Childs, Leung, and Nielsen (Childs et al., 2005) used the approach of the one-bit 
teleportation (Zhou et al., 2000) to unify the two models; see Fig. 5.  

 

Figure 5. One-bit teleportation picture. (a) Z-teleportation. (b) X-teleportation. (c) Two X-teleportation followed by a CZ gate. (d) 
A useful gate identity that swaps the two output ports.  (e) Simulation of the Controlled-Z gate. By using circuit identities, including 
that in (d), it can be shown that (c) is converted to (e). The latter is useful as the action of the CZ gate on a two-qubit input ψ arises 
from the measurement on the cluster-state entanglement, indicated by the part of the circuit before the vertical dashed line. See 
also Ref. (Childs et al., 2005). 
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State transfer-based measurement scheme for quantum computation. Instead of teleportation, Perdrix 
proposed a state-transfer approach for measurement-based quantum computation (Perdrix, 2005), 
where only single-qubit and two-qubit observables are used. All observables he used have two outcomes 
0 or 1 (or equivalently +1 and -1). The basic state-transfer scheme is shown in Figure 6(a), where each box 
depicts an observable that represents a two-outcome measurement that projects onto the +1 and -1 
subspace of the observable’s eigenstates. Unlike teleportation, it uses only two qubits to transfer a one-
qubit state.  It was shown that arbitrary one-qubit gates can be implemented by rotating the observables 
in the state transfer and that the CNOT gate can be implemented by combining two such state transfers 
with only one auxiliary qubit; see Figure 6(b) and (c). Jorrand and Perdrix used this state-transfer 
perspective to relate the one-way and teleportation-based approaches in the context of a one-
dimensional cluster state (Jorrand & Perdrix, 2005).  

Given that universality can be achieved by two-qubit measurements in both the state-transfer picture and 
the teleportation picture, it seems natural to ask which two-qubit measurements are easier to implement: 
those of Leung (Leung, 2001) or those of Perdrix (Perdrix, 2005). The answer may depend on physical 
systems and how the measurements can be implemented. 

Beyond the state-transfer picture of computation, it is worth noting that Perdrix and Jorrand also 
presented a measurement-based approach to construct quantum Turing machines (Perdrix & Jorrand, 
2004). The classical Turing machine is a fundamental model of computation that inspires many 
developments, and its generalization to the quantum regime can also be useful and may lead to further 
development.  

 

 

Figure 6. Measurement-based quantum computation via state transfer. (a) The standard state transfer protocol. Each box 
represents a two-outcome measurement. For example, the X symbol indicates the measurement that projects onto +1 (s=0) and -

1 (s=1) eigenstate of 𝜎𝑥 , i.e., (|0⟩ + (−1)𝑠|1⟩)|0⟩/√2. In terms of operator, each box is a projection operator, such as (𝐼 +
(−1)𝑠𝜎𝑥)/2 for the X box, and (𝐼 + (−1)𝑠𝜎𝑧 ⊗ 𝜎𝑧)/2 for the 𝑍 ⊗ 𝑍 box. By going through a sequence of the three projections,  
the form of the output shown on the second line can be verified. (b) State transfer-based one-qubit gates. To induce a nontrivial 
gate on the output, the measurement operators can be transformed by some unitary transformation U and V. (c) State transfer-
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based two-qubit CNOT gate. To implement the action of a CNOT gate, only one additional qubit is needed, with a sequence of four 
projections (two are single-qubit and the other two are two-qubit). See also Ref. (Perdrix, 2005). 

Valence-bond or correlation-space picture. Verstraete and Cirac used the picture of valence-bond states 
(Verstraete & Cirac, 2004b) to understand the one-way computer. The cluster state that Raussendorf and 
Briegel introduced has an interpretation in terms of a tensor network of valence bonds, or what Verstraete 
and Criac referred to as projected entangled-pairs states. There are four virtual qubits at each site, except 
at the boundary, and two neighboring virtual qubits form a maximally entangled pair or a kind of valence 

bond, 𝐶𝑍|+ +⟩ = (|00⟩ + |01⟩ +|10⟩ − |11⟩)/2 = (|0 +⟩ + |1 −⟩)/√2 ; see Fig. 7(a). Because each 
physical site is also a qubit, there is a mapping from the onsite four virtual qubits to one physical qubit via 
|0000⟩ → |0⟩  and |1111⟩ → |1⟩, i.e. a repetition code. A general projected-entangled-pair state can have 
more general local mapping beyond the repetition code. As depicted in Figure 7(b) and (c), the 
computation takes place at the virtual qubits and uses teleportation similar but not identical to what was 
done in (Gottesman & Chuang, 1999; Nielsen, 2003). This approach later instigated the development of 
the correlation-space MBQC by Gross and Eisert (D Gross & Eisert, 2007). The correlation-space MBQC 
exploits the tensor-network structure of the states, such as the one-dimensional matrix-product states 
(Perez-Garcia et al., 2007, p.) as well as the two-dimensional projected-entangled-pair states (Verstraete 
& Cirac, 2004a, 2004b). It should be pointed out that projected-entangled-pair states and tensor-network 
states are used almost synonymously in the literature.  

For example, Affleck, Kennedy, Lieb and Tasaki (AKLT) constructed a one-dimensional spin chain (Affleck 
et al., 1987) whose ground state can be written in terms of the matrix-product states, with local matrices 

corresponding to “+1”, “0”, “-1” being  𝐴+1 = √2 (
0 1
0 0

) , 𝐴0 = (
1 0
0 −1

) , 𝐴−1 = −√2 (
0 0
1 0

) , 

respectively. These matrices represent the respective action on the virtual qubits when a physical spin is 
measured in the “+1”, “0”, and “-1” basis. The quantum state of the whole chain can be expressed in terms 

of the matrix-product representation: |𝜓𝐴𝐾𝐿𝑇⟩ = ∑ Tr(𝐴𝑠1
𝐴𝑠2

… 𝐴𝑠𝑁
)

𝑠
|𝑠2, 𝑠2 ⋯ 𝑠𝑁⟩. More sophisticated 

gate actions can be obtained by measuring the physical spin in a general basis; for example, if the 

measurement projects the physical spin to ( |+1⟩ − |−1⟩|)/√2, then the gate is proportional to 𝐴+1 −

𝐴−1 = (
0 1
1 0

) = 𝜎𝑥 , a NOT gate. Extending this example to arbitrary measurement axes leads to a 

general set of gates that can be implemented by measuring this AKLT state locally. Two dimensions are 
more complicated, but careful analysis on interesting known states or modification of their local tensors 
leads to useful gate constructions (David Gross et al., 2007).  

After the discussions of the original one-way computer and other variants of measurement-based 
quantum computation, it is appropriate to point out that in the literature, measurement-based quantum 
computation, one-way quantum computation, and cluster-state quantum computation are often used 
synonymously. The subtle difference may lie in what resource states are used and whether measurement 
is performed on individual qubits or multiple qubits jointly. 

Entanglement in the circuit model and the measurement-based models 

In measurement-based quantum computation, entanglement is the essential resource. In the circuit 
model, large entanglement may be created during the computation. However, it should be mentioned 
that in the circuit model, it is possible to realize universal quantum computation with little entanglement, 
as shown by Van den Nest (Maarten Van den Nest, 2013). The idea is that any circuit 𝑈 that performs a 
computation can always be modified by appending an ancillary qubit that is initialized in a state 

√1 − 𝜀|0⟩ + √𝜀|1⟩ and the original action of 𝑈 is applied when this ancillary qubit is in the state |1⟩. Thus, 
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the state of the whole system, after such a controlled action, becomes a superposition of (a) the ancillary 
qubit being |0⟩  and no computation being executed and (b) the ancillary qubit being |1⟩  and the 
computation 𝑈 being executed. Because 𝜀 is small, the state of the quantum computer is dominated by 
case (a) and has little entanglement at any stage of computation. In contrast, the one-way quantum 
computer requires the substantial presence of initial entanglement in the resource state. 

 

 

 

Figure 7. Tensor network and gates in the cluster state. (a) A valence-bond or tensor-network view of the cluster state. Each site 
contains a number of `virtual’ qubits (equal to the number of neighbors), and each virtual qubit is entangled in the form of 

𝐶𝑍 |+ +⟩ = (|00⟩ + |01⟩ +|10⟩ −|11⟩)/2 = (|0 +⟩ + |1 −⟩)/√2 with one other virtual qubit on a neighboring site. This form of 

entanglement, as well as the singlet (|01⟩ − |10⟩)/√2 is referred to as a valence bond. The physical qubit is obtained by projecting 
on to the two-dimensional subspace of |0 … 0⟩ and |1 … 1⟩, as if the physical qubit is encoded by a few onsite virtual qubits using 
the repetition code. Therefore, such a state is also called a projected-entangled-pair state. The connected array of virtual qubits 
with onsite projection can be described by a tensor network, and hence it is also called a tensor-network state. (b) One-qubit gate 
in the virtual qubit via teleportation. This is a setup similar to quantum teleportation shown in Fig. 4(a). The state on the virtual 
qubit a can be teleported to c with an additional unitary action. However, the measurement can only be done on the physical 
qubit, and hence may not be in arbitrary rotated Bell basis of the two virtual qubits. (c) Two-qubit gate via teleportation of virtual 
qubits. This is similar to a pair of teleportations, except that there is an additional valence bond between the two groups of virtual 
qubits in the ovals. Via two teleportations, a two-qubit gate can be implemented, which is similar, though not identical, to the 
setup in Fig. 4(c). See also Ref. (Verstraete & Cirac, 2004b). 

Part two: Further developments of MBQC and connections to other subjects 
Resource states beyond cluster states 

Cluster states are recognized as a resource for measurement-based quantum computation, in particular, 
in the one-way quantum computer and the correlation-space approach. This was originally shown for the 
square-lattice cluster state. In fact, cluster states can be defined on any graph, usually referred to as graph 
states. An immediate question after the work of Raussendorf and Briegel was whether cluster states 
defined on other 2D lattices were also universal in the sense that they could also be used for universal 
quantum computation by measuring individual spins. This was first addressed by Van den Nest and 
collaborators (Maarten Van den Nest et al., 2006), who showed that cluster states on other regular lattices 
such as the triangular, hexagonal, and kagome lattices, are also universal. This can be intuitively 
understood by the picture of measurement “LEGO” pieces for universal gates (discussed earlier). Another 
approach to proving the universality is to demonstrate that these cluster states can be interconverted (to 
a smaller size) by performing single-qubit measurements on a subset of qubits, as done by Van den Nest 
and collaborators.  
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A natural next question is whether the universality holds when the lattice is not perfectly regular or, more 
generally, the qubits reside on vertices of planar random graphs. Browne and collaborators first addressed 
this, showing that the universality of the faulty square-lattice cluster state depends on the connectivity of 
the lattice, or more explicitly, the so-called site percolation threshold (Browne et al., 2008). Such a view 
of percolation was later shown to hold generally for graph states on planar random graphs (Wei et al., 
2012).   

Several obvious questions arise. Are there other types of resource states? Can these resource states 
emerge as ground states of short-ranged Hamiltonians, preferably with a gap? Can thermal states provide 
useful computation? What is the entanglement requirement of resource states? Can MBQC be fault-
tolerant, just like the circuit model employing quantum error-correction codes? Can universal quantum 
computation become a property of a phase of matter? Is MBQC a practical approach to build a quantum 
computer? The second part of this review discusses answers to these questions as well as other topics of 
MBQC. 

MBQC is programmable.  

Nielsen and Chuang showed that it is not possible to build a general-purpose quantum computer to 
perform an arbitrary quantum computation unless the gate array is operated probabilistically (Nielsen & 
Chuang, 1997). Their result is based on the circuit model and teleportation. The framework of the MBQC 
actually allows for a general-purpose quantum computer. In terms of the cluster state, the gate can be 
applied deterministically provided feedforward is permitted and the size of the cluster state is sufficiently 
large. The resultant quantum state before the final readout is correct up to Pauli corrections, but the 
classical outcomes can be corrected. Therefore, it can be argued that such a general-purpose 
measurement-based quantum computation does allow for arbitrary quantum computation and is hence 
programmable. 

Entanglement requirement of one-way and correlation-space MBQC 

Systems of limited entanglement can be efficiently simulated by classical computers (Vidal, 2003). From 
this perspective, entanglement in the universal resource states should grow with their system size, as 
shown by Van den Nest and coworkers, and is consistent with the entanglement in various universal 
cluster states (Maarten Van den Nest et al., 2006). Van den Nest and coworkers further applied an 
entanglement quantifier called Schmidt rank, which is the least number of components in a product form 
(with respect to a bi-partitioning A:B) that a quantum state can be decomposed to, i.e., the number 𝑥 in 
the decomposition |𝛹𝐴𝐵⟩ = 𝛴𝑖=1

𝑥 |𝜓𝑖⟩𝐴 ⊗ |𝜑𝑖⟩𝐵. They showed that when the Schmidt rank of a quantum 
state, maximized over all bi-partitions, is only logarithmic in the system size, then the efficient classical 
simulations of MBQC using the quantum state is possible (M. Van den Nest, Dür, Vidal, et al., 2007). This 
is a no-go result for universal quantum computation with limited entanglement. Thus, it is natural to ask 
how much entanglement in the resource state is needed for universal MBQC. It is expected to scale with 
the number of qubits. However, the following result is unexpected. 

Too much entanglement is useless. Gross, Flammia, and Eisert (David Gross et al., 2009) found that random 
states generically have a high amount of entanglement and if the entanglement of a quantum state is too 
high, then using it for MBQC cannot offer any speedup for computation and is no better than random coin 
tossing. A similar conclusion that random states drawn uniformly from the state space (or in a more 
technical term, from the Haar measure) are useless for MBQC was reached by Bremner, Mora, and Winter 
(Bremner et al., 2009). Both results suggest that quantum states that are a universal resource for QC are 
actually rare and that as commented by Bacon, “entanglement, like most good things in life, must be 
consumed in moderation” (Bacon, 2009). In fact, by using computational complexity theory, Morimae 
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showed that it is generically a difficult problem to find resource states for measurement-based quantum 
computation (Morimae, 2017). 

Fault Tolerance of MBQC 

In order to guarantee that quantum computation can proceed as long as is needed, error correction and 
fault tolerance are necessary. In the circuit model, transversal error correction codes are used to encode 
a logical qubit by several physical qubits, so that an error can be suppressed at the encoded logical level 
if the error rate at the physical level is sufficiently low (Gottesman, 1997; Lidar & Brun, 2013). Error 
correction in other models of quantum computation, such as the adiabatic quantum computation, is still 
not yet settled. The issue of fault tolerance in the one-way quantum computer was first addressed by 
Raussendorf in his PhD thesis (Raussendorf, 2003). One can essentially use the 2D cluster state to simulate 
1D fault-tolerant circuits. In a similar way, Nielsen proposed to use the teleportation-based approach to 
simulate quantum circuits with error correction. He argued that a similar threshold theorem should hold 
here.  

Later, Nielsen and Dawson addressed the issue of fault-tolerance in the one-way quantum computation 
with cluster states (Nielsen & Dawson, 2005). They employed the techniques in the conventional circuit 
model and developed methods to translate the noise and error considerations into the one-way quantum-
computer model. They proved that it is indeed possible that the computation is fault-tolerant, provided 
the error rate is below a certain threshold. However, they did not give a numerical estimate of the 
threshold value. 

Raussendorf, Harrington, and Goyal (Raussendorf et al., 2006, 2007) exploited a three-dimensional cluster 
state so that each two-dimensional slice is used to simulate the surface code, a popular error-correcting 
code (S. B. Bravyi & Kitaev, 1998; Fowler et al., 2009; Kitaev, 2003). However, the surface code alone 
cannot achieve all universal gates; additional gates that are needed to complete the universality can be 
inserted by the so-called magic-state distillation (S. Bravyi & Kitaev, 2005). The 3d cluster state can be 
imagined to be measured layer by layer. Specific measurement patterns mimic the braiding of anyons of 
topological quantum computation to create gates allowed in the surface code, and others are used to 
inject the magic state. They showed that the error threshold in this topologically simulated fashion 
achieved as high as 0.75%, compared to other estimates of order 0.01% or lower (Nielsen & Chuang, 2002).  
The higher the threshold, the higher the tolerance of errors. Such a topological protection of the MBQC 
also gives rise to a high threshold in the so-called surface-code quantum computation (Fowler et al., 2012; 
Raussendorf & Harrington, 2007), intensively pursued in the circuit-model-based quantum computers 
using a two-dimensional architecture.  

Recently, Brown and Roberts developed a general framework that translates a fault-tolerant procedure 
for stabilizer codes to a measurement-based protocol (Brown & Roberts, 2020) by treating the resource 
state and single-qubit measurement pattern in the MBQC as a gauge fixing, which is an advanced 
technique in the subsystem error-correction codes.  

Resource states as ground states of short-ranged interacting Hamiltonians 

Cluster states can be created by unitary evolution induced by Ising-type spin-spin interaction. This was 
demonstrated in cold atoms (Mandel et al., 2003). However, it may not be easy to achieve such active 
coupling for other types of resource states. An alternative method, if the resource state is the unique 
ground state of a short-ranged interacting Hamiltonian with a finite spectral gap, is by cooling the system 
to low-enough temperature. Unfortunately, cluster states are not unique ground states of any two-body 
interacting Hamiltonians (Nielsen, 2006). The cluster state on the square lattice is the unique ground state 
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of a five-body interacting Hamiltonian with a nonzero spectral gap. Interaction involving more than two 
spins is generally difficult to engineer. [If the condition of being exact ground states is relaxed, then the 
cluster state in certain encoding forms can be an approximate ground state of a two-body interacting 
Hamiltonian (Bartlett & Rudolph, 2006).] A linear-optical simulation of the cooling of a cluster-state 
Hamiltonian has actually been performed for a three-site chain, whose Hamiltonian involves only the 
three spins. Ideally the range of interaction should involve just the nearest neighbors. If such a 
Hamiltonian can be engineered (which, in itself, is also not a trivial task), then simply ‘cooling’ the system 
to low-enough temperature can prepare the system to be close to the perfect universal resource ground 
state. An obvious question is where such states and their Hamiltonian can be found. 

The first provable universal resource state with a nearest-neighbor interacting parent Hamiltonian with a 
non-zero spectral gap is the so-called tri-cluster state defined on the hexagonal lattice, invented by Chen 
and collaborators (X. Chen et al., 2009). This is a quantum state with a local Hilbert space of dimension six, 
which contains the cluster state in three different bases, hence the name tri-cluster state. Despite this 
having more than two levels, the tri-cluster state can be further converted to a cluster state of qubit local 
Hilbert space (i.e. of two levels) by the so-called quantum state reduction (X. Chen et al., 2010). 

Tensor-network states and correlation-space MBQC 

The correlation-space measurement-based quantum computation taps into tensor-network states for the 
enabling resource (D Gross & Eisert, 2007; David Gross et al., 2007; Verstraete & Cirac, 2004b) (D Gross & 
Eisert, 2007; David Gross et al., 2007; Verstraete & Cirac, 2004). It explains how the cluster state used in 
the one-way quantum computer can be understood with local tensors. It offers a simple explanation of 
local gates and also generalizes resource states by modifying local tensors. However, it should be pointed 
out that the computation is carried out in the Hilbert space of virtual qubits, in contrast to the one-way 
quantum computer where the computation is done in the Hilbert space of physical qubits. Some example 
states investigated in the correlation-space picture include the AKLT state and modified toric code states 
(David Gross et al., 2007).  

Affleck-Kennedy-Lieb-Tasaki states for universal MBQC.  

One family of states that has gained much attention for the MBQC is the one constructed by Affleck, 
Kennedy, Lieb, and Tasaki (AKLT) (Affleck et al., 1987, 1988). The particular 1D AKLT model gives strong 
evidence of Haldane’s conjecture (Haldane, 1983) that isotropic quantum spin chains of integer spin have 
a unique ground state with a finite spectral gap. This is the opposite of half-integer spin chains, where the 
ground state is either degenerate or the system does not possess a finite spectral gap (Lieb et al., 1961). 
The AKLT construction by valence-bond states naturally generalizes to higher dimensions and arbitrary 
graphs. It was shown that these AKLT states are unique ground states of certain isotropic two-body 
interacting Hamiltonians. The local Hilbert-space dimension and the explicit form of the Hamiltonian 
depend on the local structure of a lattice.  

The 1D AKLT state of local Hilbert-space dimension 3 (i.e. qutrits) was first explored by Gross and Eisert in 
the measurement-based quantum computation (D Gross & Eisert, 2007; David Gross et al., 2007) using 
the correlation-space picture. Brennen and Miyake (Brennen & Miyake, 2008) later realized that, to 
execute one-qubit operation in the edge state of the spin-1 AKLT chain, the coupling of the edge spin with 
the bulk must be turned off and a subsequent local measurement performed on it. In fact, this works with 
any spin chain in the so-called Haldane’s phase that is symmetry protected (Miyake, 2010). 

To go beyond one dimension, Cai and coworkers considered stacked layers of 1D AKLT chains with 
decoration; namely in each layer there are spins of local dimension 4 residing on the backbone of a chain 
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and spins of local dimension 2 are connected to each site of the backbone. They transformed such a layer 
structure of 1D chains into a 2D AKLT-like state. They showed that this state is universal for MBQC (Cai et 
al., 2010). Later it was shown by Wei and coworkers (Wei et al., 2011) and independently by Miyake 
(Miyake, 2011) that the original 2D spin-3/2 AKLT state on the hexagonal lattice is actually universal for 
MBQC. Such a result was also generalized beyond the hexagonal lattice (Wei, 2013; Wei, Haghnegahdar, 
et al., 2014), including the universality of the spin-2 AKLT state on the square lattice (Wei & Raussendorf, 
2015).  

One approach to show that AKLT states are universal for MBQC is to convert the AKLT state to a cluster 
state, which is itself universal, via local measurement. In the case of the spin-3/2 AKLT states, a four-level 
system must be mapped locally to a two-level system. This can be achieved by a generalized measurement 
at all sites. Similar to the projective measurement, the outcome of the generalized measurement on the 
AKLT spins is also random and has three different outcomes labeled by x, y, or z. It was shown that for any 
outcome of the generalized measurement on all sites, the AKLT state is transformed into an encoded 
graph state. Encoding simply means that a logical qubit is extended to connected sites of the same type 
of outcome (x, y, or z); see Fig. 8(b)(e). The graph is modified from the hexagonal lattice: each domain that 
contains connected sites of the same outcome form a vertex, whereas the interdomain edges need to be 
treated in a modulo-2 manner: an even number of edges will be converted to no edge between two 
domains, but an odd number of edges will be converted to a single edge that connects two domains; see 
Fig. 8. Invoking the results of universality for random planar graphs, if their connectivity as defined by 
percolation is sufficiently high, then the graph states are as good as regular cluster states for MBQC. This 
connectivity was checked and confirmed by numerical percolation simulations (Wei et al., 2011). 

 

Figure 8. The preprocessing generalized measurement on the one-dimensional and hexagonal AKLT states. (a) & (d): valence-bond 
definition of the AKLT states. Each site consists of 2 or 3 virtual qubits, depending on the number of neighbors, and two neighboring 

qubits form a valence-bond state of the form (|01⟩ − |10⟩)/√2 . A physical spin is obtained from the virtual qubits by 
symmetrization, e.g. 00→ “+1”, 01+10→ “0”, and 11→”-1”, where “+1”, “0”, and “-1” are the labels for the physical spin on a site 
of a linear chain.  (b)&(e) illustrate the random outcomes of the generalized measurement on all sites; there are three possible 
outcomes labeled by X, Y and Z. For example, in (b) the Z indicates that the measurement projects the local site to a two-
dimensional Hilbert space spanned by “+1” and “-1”, and the X and Y indicate similar projections but rotated from Z axis to X and 
Y axes, respectively. Similar generalized measurement is also performed on the hexagonal lattice, indicated in (e). (f) An example 
of domains, which contain connected sites with the same outcome of the generalized measurement. (c) & (f) are the resultant 
graphs for the graph states to which the AKLT states are converted by the generalized measurement. As seen in (c) & (f), some 
blocks (or also known as domains) are composed of a few sites, due to the valence-bond correlation that gives rise to a redundant 
encoding of a logical qubit by a few physical sites, when these connected sites share the same outcome. The generalized 
measurement filters out a graph state randomly from the AKLT state. 
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Another approach to proving the universality is to demonstrate that universal gates can be simulated. 
Miyake used the same generalized measurement and defined the notion of a computational backbone 
(Miyake, 2011), where one- and two-qubit gates were constructed in the correlation-space picture. He 
argued that a macroscopic size of the backbone exists with a sufficiently high probability on the hexagonal 
lattice, and thus, the AKLT state is universal for MBQC.  

Higher spins present specific technical difficulties. However, Wei and Raussendorf managed to show that 
the spin-2 AKLT state on the square lattice is universal (Wei & Raussendorf, 2015, p. 2). Whether AKLT 
states with higher spins than 2 are universal for MBQC remains open. 

The issue of the nonzero gap above the ground state in the spin-3/2 model on the hexagonal lattice has 
been a longstanding question. AKLT showed that the spatial correlation function in the ground state 
decays exponentially, but the existence of the gap could not be proved (Affleck et al., 1987). Recently, two 
groups independently used numerically assisted approaches to show that the AKLT model indeed 
possesses a nonzero spectral gap (Lemm et al., 2020; Pomata & Wei, 2020), even in the limit that the 
system size becomes infinite. Therefore, the AKLT models provide example Hamiltonians that are short-
ranged, gapped, and have a unique ground state that is universal for measurement-based quantum 
computation. This property may be helpful when creation of the ground-resource states is performed by 
cooling the temperature of the physical system. 

Symmetry-protected topological states and quantum computational phases of matter. 

The lack of a systematic approach to characterize universal resource states has led researchers to consider 
certain phases of matter, and in particular, the symmetry-protected topological phases. Else and 
coworkers (Else et al., 2012) found that teleportation of the one-qubit state is possible in the correlation 
space anywhere within a symmetric phase of 𝑍2 × 𝑍2, but general gates can only be achieved at very 
special points in the phase of matter. The 𝑍2 symmetry group consists of only two elements, such as the 
identity element and a rotation around x axis by 180 degrees; 𝑍2 × 𝑍2  is a symmetry group that is a 
product of two such 𝑍2 symmetry groups (that commute with each other). Example states in the nontrivial 
𝑍2 × 𝑍2 phase include the 1D cluster state and the 1D AKLT state. The ability to implement teleportation 
in a quantum wire with 𝑍2 × 𝑍2 symmetry (as in the work of Else et al.) was later extended to other 
symmetry groups, including non-Abelian ones (Prakash & Wei, 2015). More relevantly, Miller and Miyake 
generalized the idea of renormalization (Bartlett et al., 2010) and used it to show that the 1D symmetry-
protected topological phase by 𝑆4 symmetry (which is the permutation group of 4 objects) can give rise 
to the implementation of arbitrary one-qubit gates (Miller & Miyake, 2015).  Subsequently, Stephen and 
coworkers extended this more generally (Stephen et al., 2017). This is the strongest connection of 
symmetry-protected topological phases to quantum computation. However, a one-dimensional state of 
matter only offers limited computation, such as one-qubit gates. In order to obtain universal quantum 
computation, higher dimensions are needed. 

Doherty and Bartlett considered teleportation to be a necessary condition and devised an order 
parameter to detect it in a cluster Hamiltonian with an external field (Doherty & Bartlett, 2009). They 
found that such characterization coincided with the conventional phase diagram of the model. However, 
the ability to teleport does not necessarily imply the ability to implement universal gates. 

Going beyond one dimension, Poulsen-Nautrup and Wei considered the fixed-point wavefunctions of 2D 
symmetry-protected topological phases constructed by Chen and coworkers using the mathematics of 
cohomology and showed that they could be used to perform universal measurement-based quantum 
computation (Poulsen Nautrup & Wei, 2015). Independently, Miller and Miyake considered a different 
symmetry-protected topological state (with 𝑍2 × 𝑍2 × 𝑍2 symmetry) on the “union-jack” lattice based on 
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a Control-Control-Z gate construction by Yoshida (Yoshida, 2016) and showed that this state could also be 
used for universal measurement-based quantum computation (Miller & Miyake, 2016). This universality 
was later generalized to the symmetry of 𝑍𝑑 × 𝑍𝑑 × 𝑍𝑑  (Y. Chen et al., 2017). One interesting feature in 
the work of Miller and Miyake is that universality can already be achieved by measuring Pauli operators, 
namely along the x-, y- and z-axis of the Bloch sphere, which is not the case in the cluster state. in Ref. 
(Wei, 2018), the construction by Miller and Miyake was shown to be equivalent to a different, but widely 
known, topological state constructed by Levin and Gu (Levin & Gu, 2012), whose model was a 
paradigmatic one for two-dimensional symmetry-protected topological phases. However, these studies 
only apply to specific representative wavefunctions of the symmetry-projected topological phases. An 
attempt was made by Wei and Huang that extended the universality to an extended region around some 
of these fixed-point states (Wei & Huang, 2017), but whether an entire phase could be reached was not 
known at that time. 

It is possible to obtain universal resource from an entire phase of matter in two dimensions. The particular 
phase is called the cluster phase (Raussendorf et al., 2019), which contains the cluster state as a specific 
example. It has been studied on various 2D lattices (Daniel et al., 2020; Devakul & Williamson, 2018), and 
it was understood that the essential symmetry that provides such computational power belongs to the 
so-called subsystem symmetry, including a symmetry element which acts on spins located spatially in a 
fractal pattern. These results point to a possible general notion of quantum-computational phases of 
matter. In fact, a different perspective of quantum-computational phases of matter has been explored in 
the context of intrinsic topological phases where braiding of anyonic excitations leads to a myriad of 
quantum gates (Nayak et al., 2008). 

Thermal states for measurement-based quantum computation.  

The cluster state in the one-way quantum computer can be regarded as the ground state of a cluster 
Hamiltonian, which is related to a simple paramagnetic Hamiltonian via transformation using Controlled-
Z gates (Briegel & Raussendorf, 2001).  The ground state is the property of a system at zero temperature, 
but in real life, the system will always sit at a finite temperature. Thus, it is natural to consider one-way 
computation at finite temperatures. Fujii and coworkers compared the cluster Hamiltonian and a related 
interacting cluster Hamiltonian that is transformed to an Ising-interacting Hamiltonian and investigated 
the finite-temperature effect on the computational capability (Fujii et al., 2013). The latter model 
possesses a thermal phase transition, whereas there is no transition in the original cluster-state model. 
Fujii et al. found that the long-range order in their model enhances the robustness of quantum 
computation against thermal excitations.  In going beyond cluster models, Li and coworkers constructed 
two models in two- and three-dimensions in which the thermal states are useful for universal MBQC and  
the interactions do not need to be turned off during computation (Li et al., 2011). The three-dimensional 
model was subsequently modified by Fujii and Morimae to one that possesses uniform spin-3/2 entities 
on all sites. They showed that from the thermal state, a relatively clean cluster state of high connectivity 
could be distilled (Fujii & Morimae, 2012). Other constructions were proposed (Wei, Li, et al., 2014) that 
also discussed the thermal transition of quantum-computational power. Consideration of thermal states 
and the finite-temperature effect for measurement-based quantum computation will become relevant in 
the effort of building a realistic measurement-based quantum computer. 

MBQC and classical computation  

The aim of measurement-based quantum computation is to achieve the capability of universal quantum 
computation. It not only relies on simple classical computation but may also yield insight on the latter. 
Van den Nest and Briegel established a connection between the MBQC and the field of mathematical logic 
(Maarten Van den Nest & Briegel, 2008). In particular, if a graph state yields a speed-up of the quantum 
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computation with respect to its classical counterpart, then the underlying graph is associated with an 
undecidable logic theory, where the undecidability is similar to Gödel’s incompleteness results. 

From a different perspective, Anders and Browne studied how the correlations exploited in MBQC enabled 
computational power (Anders & Browne, 2009); see Fig. 9. Cluster states possess certain kinds of 
entanglement and correlations, and the classical computer interacting with such correlations (as revealed 
by measurement) only needs to execute binary addition in order to achieve universal quantum 
computation. Thus, a meaningful question is, with the limited power of a classical computer, how do the 
correlations give rise to computational power? For certain tensor-network states, to achieve universal 
quantum computation, the classical computer needs operations beyond binary addition. Said conversely, 
a limitation to perform only binary addition (i.e. parity) for the classical computer interacting with the 
correlations from the tensor network states may not achieve universal quantum computation. This also 
leads to the concept of measurement-based classical computation: what kind of correlations can boost 
the computational power of a classical parity computer? Anders and Browne showed that correlations in 
any bipartite quantum states cannot help to realize the classical NAND gate deterministically. In contrast, 
the three-qubit GHZ can do that, thereby boosting the classical computer to a classical universal one. 
These considerations also reveal a connection between the violation of local realistic models and the 
computational power of entangled states. Such violation is a manifestation of the so-called contextuality 
in the foundations of quantum mechanics (Kochen & Specker, 1967). Naively, one might expect that the 
measurement of observables simply reveals their pre-existing values and hence is not contextual. 
However, this view is at odds with quantum mechanics.  

 

Figure 9. A control computer interacts with a correlation resource; see also Ref. (Anders & Browne, 2009). This schematic diagram 
explicitly specifies the classical control computer, which is needed in the measurement-based quantum computation to compute 
the basis adaptation, such as that indicated in Fig. 3(c). The computational power of the classical control itself is limited. However, 
it can send the instruction of measurement axis to the correlation resource, which is an entangled state, and reads out the two-
outcome measurement 0/1. Depending on the correlation resource, the resultant computational power of the classical computer 
can be enhanced. 

In addition to its role in quantum foundations, contextuality has been shown to supply the ‘magic’ to 
quantum computation (Bermejo-Vega et al., 2017; Howard et al., 2014). It is known that quantum 
computation with a limited gate set such as the Pauli gates, Hadamard, phase and CNOT gates (in the 
family of Clifford gates) can be efficiently simulated by a classical computer. A non-Clifford gate is needed 
to boost the power of a quantum computer. The consequence of a state being contextual is that a magic 
state can be distilled out of it and enables implementation of non-Clifford gates, making a quantum 
computer universal. Clifford gates are those that transform a product of Pauli operators to another 
product form, and quantum computation using only Clifford gates can be efficiently simulated by a 
classical computer, therefore such a computer cannot achieve universal quantum computation 
(Gottesman, 1999). An example of a non-Clifford gate is a rotation around the z-axis by 45∘, also known 
as the T gate. Adding this T gate to the set of Clifford gates unleashes the power of universal quantum 
computation.  
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Given that contextuality is intimately related to measurement, Raussendorf expanded the study of 
contextuality in MBQC and showed that such a qubit quantum-computational model with classical binary-
addition capability is contextual if it can compute a nonlinear Boolean function with a high probability. 
Namely, such a computational model cannot be explained by a realistic local hidden-variable model. In 
particular, this shows that such MBQC executing the quantum algorithm for the discrete log problem is 
contextual; the super-polynomial speedup over the best-known classical algorithm seems to be supplied 
by contextuality. Such a result was recently generalized to the qudit (with 𝑑 levels instead of two) scenario 
that shows strong non-locality is necessary for MBQC evaluating high-degree polynomial functions, with 
the classical control computer having only linear processing capability (Frembs et al., 2018).  

Time ordering in MBQC 

In the one-way quantum computer of Raussendorf and Briegel (Raussendorf & Briegel, 2001), 
measurement axes of some qubits may depend on the measurement outcomes of previously measured 
qubits. This results in partial time ordering among qubits in terms of measurement (Raussendorf et al., 
2003). This can also be formulated in terms of the flow of quantum information (Danos & Kashefi, 2006), 
as illustrated in Fig. 10, which has led to a flow condition that gives rise to deterministic computation on 
graph states (de Beaudrap, 2008b, 2008a). Measurement calculus has also been developed for the one-
way quantum computer (Danos et al., 2007). These have led to the reduction and parallelization of a 
certain class of polynomial-depth circuits to logarithmic ones (Broadbent & Kashefi, 2009). The notion of 
flow has also been generalized so as to deal with the situation where there is no flow on an entanglement 
graph, but instead a generalized flow exists, as well as to optimize implementation of the unitary gates 
(Browne et al., 2007). Generalizing this to stabilizer states beyond graph states, temporal relations and 
measurement settings were classified in terms of bases of the so-called check matrix that characterizes 
these states. This also gave rise to the result that classical processing relations for deterministic 
computation can constrain the resource state and measurement setting (Raussendorf et al., 2016).  

 

Figure 10. Illustration of a flow. Dependence is indicated by arrows. A partial order is marked by a number on a group of vertices; 
see also Ref. (Danos & Kashefi, 2006). There are an input set I of vertices and an output set O of vertices. All qubits, except those 
in O, will be measured. The complement of I is the set of all vertices not in I and it is denoted by Ic, and similarly the complement 
of O is denoted by Oc. A flow consists of (i) a mapping f from Oc to Ic, marked by an arrow between neighboring vertices, and (ii) a 
partial ordering >, so that f(i)>i. In order for the two conditions to be consistent, any neighbor, e.g., k of f(i) that is not i, must be 
k>i. The existence of a flow ensures that a deterministic unitary gate can be implemented. (a) A one-dimensional graph with a 
flow. Here the partial order labeling coincides with the qubit labeling. (b) A graph with a flow. The numbers outside the dashed 
boxes indicate the ordering. 
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MBQC and classical spin models 

In statistical mechanics, knowledge of the partition function of a system gives rise to its equilibrium 
properties (Baxter, 2016; McCoy, 2010). Van den Nest, Dür and Briegel found that the partition function 
of the well-known classical Ising model in statistical mechanics (Baxter, 2016; McCoy, 2010) can be written 
as the overlap between a resource state Ψ and a product state (M. Van den Nest, Dür, & Briegel, 2007). 
The resource state Ψ is a graph state that encodes the interaction pattern of the model, and the product 
state encodes coupling and local field strengths, which can be complex in general. Such an overlap 
represents a branch in the measurement-based quantum computation. If it is easy to compute the 
corresponding partition functions for all model parameters, then the quantum computation can be 
efficiently simulated by classical means, and thus the corresponding resource state is not universal (Van 
den Nest et al., 2007). Moreover, the 2D Ising model is regarded as complete in that the partition function 
of the q-state Potts models in statistical mechanics (Baxter, 2016; McCoy, 2010) can be reduced to an 
instance of the partition function of the Ising model with generally complex parameters. The connection 
to MBQC is made via the branch in the computation (specified by the product state) using a 2D cluster 
state for both the Ising and q-state Potts models in statistical mechanics (M. Van den Nest et al., 2008). 
Using measurement-based quantum computation to study classical spin models seems to be an 
interesting research direction.  Considerations along this line of thought have led to the fruitful finding 
that all the physics of every classical spin model is reproduced by certain “universal models” in their low-
energy sector and that the two-dimensional Ising model with fields is universal (De las Cuevas & Cubitt, 
2016). 

Blind quantum computation. 

In the one-way computer, once the resource state and the measurement patterns are fixed, the specific 
quantum circuit is determined. Imagine a server that takes the instruction of measurement axes and 
reports the outcomes to a client that intends to run some quantum computation. Is it possible that the 
client can instruct the server, but the latter cannot find out what quantum circuit has been executed? 
Broadbent, Fitzsimons, and Kashefi (Broadbent et al., 2009) devised so-called blind quantum computation 
using measurement-based quantum computation to achieve this. However, it requires the client to 

prepare the initial product state of the entire array of qubits in the form |0⟩ + 𝑒𝑖 𝜃|1⟩, where the phase 𝜃 
is a multiple of π/4. Then the client sends all qubits to the server, which then places them on a brickwork 
lattice (see Fig. 11) and applies the Controlled-Z gates pairwise according to the brickwork structure. 
Subsequent communication between them is entirely classical. They communicate back and forth via the 
client informing the measurement axes of a column of qubits to be measured, and the server returns the 
measurement outcomes. The computation terminates when all qubits have been measured. Broadbent 
and coworkers showed that by randomly initializing the qubits and randomly flipping the measurement 
axes, the client could hide the computation from the server. A small-scale experimental demonstration of 
blind quantum computation has been carried out by Barz and coworkers (Barz et al., 2012). There have 
been many works following up on the idea of blind quantum computation; see the review by Fitzsimons 
(Fitzsimons, 2017) and references therein.  
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Figure 11. Brickwork lattice that hosts the blind quantum computation; see also Ref. (Broadbent et al., 2009). Each circle represents 

a qubit and the symbol inside it indicates the measurement axis or the corresponding observable, e.g., 𝑂̂(𝜉) ≡ 𝑐𝑜𝑠 𝜉 𝜎𝑥 + 𝑠𝑖𝑛 𝜉 𝜎𝑦.   

The brickwork state is a graph-like state with the graph being the brickwork lattice and is defined by a two-step process: (1) the 

client prepares each qubit randomly in any of the states: (|0⟩ + 𝑒𝑖 𝜃|1⟩)/√2. with 𝜃 = 0,
𝜋

4
, … ,

7𝜋

4
, and sends all the qubits to the 

server;   (2) the server arranges all qubits on a brickwork lattice and applies CZ gates pairwise to those two spins connected by an 
edge. Similar to the cluster state, the computation proceeds by measuring qubits from left to right, with later measurement axis 
adaptation; in the server-client setting, this is informed by the client to the server that performs the measurement. The 
achievement of the blind quantum computation is that the client can perform a delegated computation by specifying the 
measurement axes without the server knowing the computation itself. 

Issues of measurement axes and observables 

Already in the work of blind quantum computation (Broadbent et al., 2009), measurement of observables 
in the x-y plane is sufficient, as there is no need to carve the required entanglement structure from some 
other initial cluster or graph states. Mantri and coworkers consider open-ended rectangular lattices and 
show that for cluster states on these lattices, measurement in the x-y plane is also sufficient (Mantri et 
al., 2017). In a 𝑍2 symmetry-protected topological state, which belongs to the hypergraph states, Miller 
and Miyake showed that only Pauli X, Y, and Z measurements are sufficient (Miller & Miyake, 2016). 
Subsequently, Takeuchi and coworkers constructed a specific hypergraph state such that only Pauli X and 
Z measurements are sufficient (Takeuchi et al., 2019). It is believed that further reduction of measurement 
is unlikely to be possible, but Pauli measurements are relatively easy to implement. However, hypergraph 
states may not be trivial to generate. 

Linear-optical quantum computation 

The perspective of MBQC also revived the proposal by Knill, Laflamme and Milburn that showed that it is 
possible to use linear-optical elements assisted with single-photon sources and detectors for universal 
quantum computation in the standard circuit model (Knill et al., 2001). Despite the scheme being possible 
in principle, the required resources involved are daunting (Li et al., 2015). It is by using cluster states of 
the one-way quantum computation (Browne & Rudolph, 2005; Nielsen, 2004) that the interest in linear 
optical quantum computation was revived, as the resource requirement was dramatically reduced (see 
Fig. 12). Some small cluster states were realized by merging down-conversion entangled photon pairs (Lu 
et al., 2007; Walther et al., 2005).  There have been further works that propose methods to create 2D 
cluster states (Economou et al., 2010; Gimeno-Segovia et al., 2019; Lindner & Rudolph, 2009). Recently 
there has been some experimental effort towards realizing key proposed ingredients (Schwartz et al., 
2016).  
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Figure 12. Schematic illustration of creating a cluster by merging. (a) Merging two pairs into a linear chain. (b) Merging two triplets 
into a cross. (c) Type-I fusion gate for photons. It consists of a polarizing beam splitter that acts on a pair of photons as well as a 
45◦ polarization rotation before a photon counter. The desired action succeeds with a probability of ½, and when it does, it achieves 
the merging operations illustrated in (a) and (b). When it fails, it removes the two photons from the clusters and further 
disconnects each chain into two parts.  (d) Type-II fusion gate. Its design consists of four polarization rotations and two photon 
counters. (e) An application of Type-II fusion. There are two linear clusters. One of the qubits is measured in the X basis (e.g. using 
a polarizing beam splitter at a 45◦), and this joins the two neighboring qubits to form a logical qubit in the repetition code, indicated 
by the oval. Then a Type-II fusion attempt is made on the two qubits enclosed by the dashed box. When the fusion is successful, it 
merges the two clusters with reduced sizes. When it fails, it does not break each chain (as would be the case in the Type-I fusion); 
it simply removes the redundant encoding in the upper chain and joins the two sites into a redundant encoding in the lower chain. 
See also Ref. (Browne & Rudolph, 2005). 

In addition to using discrete basis states such as polarization or time bins, another related development 
is to use continuous variables of light, i.e. the continuous degrees of freedom in its electric field. Menicucci 
and coworkers proposed schemes to generate continuous-variable cluster states (Menicucci, 2014; 
Menicucci et al., 2007). He later showed that it is possible to use them for fault-tolerant measurement-
based quantum computation (Menicucci, 2014). There have been experimental achievements in realizing 
large-scale cluster states of a large number of optical modes (M. Chen et al., 2014; Larsen et al., 2019; 
Yokoyama et al., 2013; Yoshikawa et al., 2016). However, it is still a challenge to perform local optical-
mode measurement for universal quantum computation. 

Graph states and measurement-based approach for quantum communication 

Bell states can be used to teleport an unknown quantum state, but in order to teleport over a long distance, 
such a long-distance entanglement needs to be established. If there is an array of Bell pairs distributed 
across two distant nodes, then so-called entanglement swapping can serve this purpose. As shown in 
Fig.13(a), with one Bell pair shared between A and B and another shared between B and C, party B 
performs a Bell-basis measurement and forwards the outcome to C, the initial shared A-B entanglement 
can be teleported to form entanglement between A and C. This is entanglement swapping (Pan et al., 
1998). By applying this to an array of entangled pairs, shown in Fig.13(b), a long-distance entanglement 
can be established (Sangouard et al., 2011). This is the basic setup of the so-called “quantum repeaters” 
(Duan et al., 2001). In fact, the measurement-based approach has provided a useful framework to 
consider ideas from entanglement purification, noisy channels, fault-tolerance, and transmission of big 
quantum data together (Pirker et al., 2018; Wallnöfer & Dür, 2017; M Zwerger et al., 2012, 2013, 2014, 
2016; Michael Zwerger et al., 2018). Some of the proposed methods have been realized experimentally 
(Chrzanowski et al., 2014), including amplification of degraded entanglement and extraction of secure 
keys in an otherwise insecure regime. 
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In using entangled photons there is, however, a limitation due to the finite failure probability of photonic 
Bell measurement, which is 1/2 without using additional resource (Calsamiglia, 2002). This means that 
successful long-range entanglement only happens at an exponentially small rate. Azuma, Tamaki and Lo 
proposed to use cluster states or graph states to solve this issue (Azuma et al., 2015). The graph of the 
graph states used in this quantum communication scheme consists of inner nodes that form a complete 
graph and outer nodes (also call leaf nodes) that are connected to the inner nodes. In Fig. 13(c), two such 
graph states are shown, which replace the two Bell pairs in Fig. 13(a). Because of multiple leaves, multiple 
attempts of Bell measurement can be made and the success probability that A and B become entangled 
can be boosted from 1/2  to 1 − 1/2𝑛, where 𝑛 is the number of leaves. This scheme, in principle, allows 
quantum communication without using quantum memories to temporarily store the states of photons. 
However, the challenge is to create such a graph state; one natural approach is to use the fusion schemes 
in Fig. 12. 

 

Figure 13. Entanglement swapping and long-distance entanglement. (a) Basic entanglement swapping uses two pairs of Bell states 
and Bell measurement. It can be regarded as teleportation of the left qubit of B to the qubit of C and therefore, A and C will share 
a Bell pair afterwards, despite the fact that A and C were never entangled before. (b) Using (a) as the basic protocol, a long-
distance entanglement can be established, e.g. between A and E. However, Bell measurement on photons (without using 
additional resources) only succeeds half of the time. (c) Generalization of entanglement swapping using more complicated 
entangled states, such as the graph state. The graph consists of inner nodes that form a complete graph (all nodes are connected 
pairwise) and outer nodes that are connected to the inner nodes. Two such graph states are shown, and one is shared between A 
and B, and the other one is shared between B and C. Because of multiple leaves, multiple attempts of Bell measurement can be 
made and the success probability that A and B become entangled can be boosted from ½ to 1-1/2n, where n is the number of 
neighboring leaf pairs. The states can be further simplified to a simpler graph by measuring some inner nodes possessed by B.  

Experimental progress 

Arguably the first experimental realization of a cluster state was done by the group of Bloch using cold 
atoms trapped in an optical lattice (with two selected hyperfine states as a qubit) (Mandel et al., 2003). 
They used a ‘cold controlled collision’ method (Jaksch et al., 1999) already envisaged in the original work 
of the cluster state by Briegel and Raussendorf (Briegel & Raussendorf, 2001), which shifted atoms by a 
lattice site depending on their hyperfine spin state so as to induce a phase shift for certain combinations 
of nearby spin states. However, at that time, individual addressing such as single-atom measurement and 
gate operation were not possible and implementation of the one-way computer was still very challenging. 
Recent progress on imaging and addressing of individual atoms makes the realization of the one-way 
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computation in trapped cold atoms probably not far-fetched (Bakr et al., 2009; Edge et al., 2015; Sherson 
et al., 2010; Simon et al., 2011; Weitenberg et al., 2011). In addition to previous use of bosonic cold atoms, 
a scheme for cluster-state generation with trapped fermionic atoms using interplay of the spin-orbit 
coupling and superexchange interaction has also been proposed, which may potentially have longer 
coherence time (Mamaev et al., 2019). 

Instead of the cold collision, a Rydberg state can be exploited to induce a phase shift for two atoms in a 
particular hyperfine state that is driven resonantly to this Rydberg state. This is due to the interaction of 
the extended electron clouds of the two atoms in a Rydberg state and is usually referred to as the Rydberg 
blockade (Jaksch et al., 2000; Lukin et al., 2001; Weiss & Saffman, 2017). Rydberg blockade and 
entanglement generation between two neutral atoms via the Rydberg blockade have been demonstrated 
experimentally (Urban et al., 2009; Wilk et al., 2010; Zhang et al., 2010). This has also led to 
implementation of a Controlled-Z gate and it can potentially be used to directly create a cluster state of 
an array of atoms (Briegel & Raussendorf, 2001).  

Small-size cluster and graph states have also been realized experimentally by probabilistically merging 
pairs of entangled photons (Lu et al., 2007; Walther et al., 2005); a small graph-state error-correction code 
was implemented (Bell et al., 2014). Deterministic schemes for their generation have also been proposed 
using solid-state and quantum-dot emitters (Economou et al., 2010; Gimeno-Segovia et al., 2019; Lindner 
& Rudolph, 2009). Important ingredients underlying these schemes have also been realized 
experimentally (Schwartz et al., 2016). In addition to the discrete polarization degrees of freedom of light, 
the so-called continuous-variable states of light have been employed to create large-scale cluster states 
in optical modes (M. Chen et al., 2014; Larsen et al., 2019; Yokoyama et al., 2013; Yoshikawa et al., 2016). 
One challenge for that system to implement computation is the measurement of individual modes and 
the fast feedforward to adapt subsequent mode measurements. 

Cluster and graph states have also been generated in other physical systems, such as in trapped ions, 
where some error correction codes were created (Lanyon et al., 2013), and in superconducting qubits, 
where some experiments were performed via the cloud-based publicly available quantum computers of 
IBM (Mooney et al., 2019; Wang et al., 2018).  

Generation of resource states beyond cluster states seems to be harder. Nevertheless, certain one-
dimensional tensor-network states used in the correlation-space approach have also been realized (Gao 
et al., 2011), including a short chain of the AKLT state (Kaltenbaek et al., 2010).  

There are other theoretical proposals to produce cluster states and implement measurement-based 
quantum computation on various physical systems (Cho & Lee, 2005; Guo et al., 2007; Koch-Janusz et al., 
2015; Kuznetsova et al., 2012; Lim et al., 2005, 2006; Lin et al., 2008; Tanamoto et al., 2006, 2009; 
Weinstein et al., 2005). It may be possible that the measurement-based approach will result in practical 
quantum computers in the not-so-distant future, comparable to those based on the standard circuit 
model. 

 

Conclusion 

Measurement-based quantum computation offers both an intellectual framework for quantum 
information processing and a blueprint for potentially building up a quantum computer. For example, the 
entanglement requirement for computation was explored, and partial time ordering and symmetry were 
also studied for deterministic computation. Furthermore, how correlations could be used as a resource 
for classical computation also links to the foundations of quantum mechanics.  Universal blind quantum 
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computation was an unexpected application of measurement-based quantum computation, which could 
be useful in future secure cloud-based quantum computation. In fact, application of the measurement-
based approach to quantum communication is already feasible. From the perspective of condensed 
matter, the existence of an entire phase of matter capable of universal quantum computation makes the 
notion of the quantum-computational phase of matter an interesting new interdisciplinary direction to 
explore.  The establishment of fault tolerance in the MBQC and a high threshold value show that it is a 
viable alternative to the circuit model using error-correction codes in terms of fighting against noise and 
error. Many physical systems have been studied to realize the MBQC, and proof-of-principle experimental 
demonstrations have been made, such as in photonic, continuous-variable, trapped atoms and ions, and 
superconducting systems. However, each system has its own challenges lying ahead that need to be 
overcome before a realistic one-way quantum computer can be constructed.  
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